

MP Biomedicals, LLC

29525 Fountain Parkway Solon, Ohio 44139 Telephone: 440/337-1200 Toll Free: 800/854-0530 Fax: 440/337-1180

mailto: biotech@mpbio.com web: http://www.mpbio.com

TECHNICAL INFORMATION

Catalog Number: 901771, 960102, 960317

Gelatin

CAS # 9000-70-8 Source: Porcine skin

Type: A (acid hydrolysis from collagen)

Grade: Food Grade (Not sold for human use; Research use only)

Bloom: The water binding capacity of the gelatin. The higher the bloom number, the higher the water binding capacity. Tested by preparing a 6% gel in a gelometer, which punches a plunger through the gel testing for the gel strength (the higher the strength of the gel, the higher the bloom number).² The bloom number is also proportional to the average molecular weight:

Bloom Number	Average Molecular Weight
50 - 125 (Low Bloom)	20,000 - 25,000
175 - 225	40,000 - 50,000
225 - 325	50,000 - 100,000

Physical Description: Off-white to tan powder

pl: The charge on a gelatin molecule and its isoelectric point are primarily due to the carboxyl amino and guanidino groups on the side chains. Type A gelatin has 78-80 millimoles of free carboxyl groups per 100 g of protein and a pl of 7.0-9.0.² **Solubility:** Below 35-40°C gelatin swells and absorbs approximately 5 to 10 times it weight of water to form a gel. Gelatin is soluble in glycerol and acetic acid, and more soluble in hot than in cold water.¹ It is practically insoluble in most organic solvents such as alcohol, chloroform, carbon disulfide, carbon tetrachloride, ether, benzene, acetone and oils.³ Sterile solutions of gelatin stored cold are stable indefinitely, but at elevated temperatures hydrolysis or rupture of peptide bonds occurs, increasing the number of free amino groups. Gel strength and viscosity gradually weaken upon prolonged heating in solution above ~40°C; this degradation is accelerated by extremes in pH, proteolytic enzymes and bacterial action.

Description: Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular weights, present in collagen. The proteins are extracted by boiling skin, tendons, ligaments, bones, etc. in water.¹ Type A gelatin is derived from acid hydrolyzed tissue and Type B gelatin is derived from lime hydrolyzed tissue. Gelatin is used as a stabilizer, thickener and texturizer in foods; to inhibit crystallization in bacteriology and prepare cultures; in PCR hybridization in molecular biology; in the pharmaceutical industry as a suspending agent, encapsulating agent and tablet binder; and in veterinary applications as a plasma expander and hemostatic sponge.^{1,4}

Typical Analysis:

Protein	87 g/100 g	Calories	348 calories/100 g
Calcium	Only trace amounts	Iron	25 ppm
Sodium	600 ppm	Phosphorus (as P ₂ O ₅)	700 ppm
Moisture	8.08%	Ash	1%
Std. Plate Count	< 10/gm	E. coli	Not detected
Salmonella	Not detected		

Typical Amino Acid Analysis (in g/100 g dry gelatin):

i ypicai Allillo Acia Allaiysis	(iii g/ ioo g ai y gciatiii).		
Alanine	8.6 - 10.7	Arginine	8.3 - 9.1
Aspartic Acid	6.2 - 6.7	Cystine	0.1
Glutamic Acid	11.3 - 11.7	Glycine	26.4 - 30.5
Histidine	0.85 - 1.0	Hydroxylysine	1.04
Hydroxyproline	13.5	Isoleucine	1.36
Leucine	3.1 - 3.34	Lysine	4.1 - 5.2
Methionine	0.8 - 0.92	Phenylalanine	2.1 - 2.56
Proline	16.2 - 18.0	Serine	2.9 - 4.13

Threonine	2.2		1.5
Tyrosine	0.44 - 0.91	Valine	2.5 - 2.8

<u>Availab</u>ility:

Catalog Number	Description	Size	
901771	Gelatin, 225 Bloom	100 g 500 g 1 kg	
960102	Gelatin, 50 Bloom, flaked	100 g 500 g 1 kg	
960317	Gelatin, 100 Bloom	100 g 500 g 1 kg	

References:

- Merck Index, 12th Ed., No. 4388.
- Standard Methods for the Sampling and Testing of Gelatins, Gelatin Manufacturers Institute of America, Inc., 501 fifth Ave., Room 1015, New York, NY.
- Martindale, The Extra Pharmacopeia, 29th Ed., p. 818, Reynolds, J.E.F. (ed.), The Pharmaceutical Press, London (1989).
 Dieffenbach, C. and Dveksler, G.S. (eds.), PCR Primer: A Laboratory Manual, Cold Spring Harbor, NY (1995).