• General Information
  • Recent Publications
  • Review Articles
  • DSS in Animals
Dextran Sulfate Sodium Salt MP Grade (36,000-50,000 Da):

Cat. No Pack Size Availability Price (USD)
0216011010 10 g In Stock 210.00
0216011025 25 g In Stock 454.35
0216011050 50 g In Stock 817.80
0216011080 100 g In Stock 1,336.65
0216011090 500 g In Stock 5,410.00
MP Premium DSS - The World's Most Potent Intestinal Inflammation Reagent
Dextran Sulfate Sodium Salt (DSS) is a polyanionic derivative of Dextran. MP Premium DSS is offered at the highest quality, purity and reproducible form which enable it for multiple applications in clinical, molecular biology, biomedical and possibly for cosmetic applications.
MP Premium Dextran Sulfate Sodium Salt has the following properties:
Inflammatory Bowel Disease (IBD) is characterized by chronic and relapsing inflammation of the gastrointestinal tract which is associated with increased risk of developing colitis-associated cancer. Several animal models have been used to study colitis and one such model involves the oral administration of dextran sulfate sodium salt (DSS) in the drinking water of mice leading to chronic colitis. This DSS induced colitis model is spontaneous and is used to assess the therapeutic potential of treatments for IBD.
Accelerate your IBD research with the most validated and attested Dextran Sulfate Sodium Salt. Our MP Premium DSS is well characterized and offers the following advantages:
Bamba et al (2012) performed a comparative analysis of 3 different DSS preparations to examine the chemical and cytotoxic properties as well as severity of colitis. Their study concluded that the DSS from MP Biomedicals induced a severe colitis as indicated by body weight transition, DAI score, colon weight/length and histological scores.

Bamba, S. et al (2012) Digestive Diseases and Sciences, 57 (2), pp. 327-334.



  • Crncec, I., et al. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol. Biol. 1267, 145–64 (2015).

  • Grill, J. et al. Intestinal E-cadherin Deficiency Aggravates Dextran Sodium Sulfate-Induced Colitis. Dig. Dis. Sci. 60, 895–902 (2015).

  • Huang, Z. et al. An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials 48, 26–36 (2015).

  • Utrilla, M. P. et al. Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis. Mol. Nutr. Food Res. 59, 807–19 (2015).

  • Zhang, Y., Brenner, M., Yang and TNBS-induced colitis in mice. Lab. Invest. 95, 480–90 (2015).

  • Sales-Campos, H. et al. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease. Int. Immunopharmacol. 26, 13–22 (2015).

  • Belkind-Gerson, J. et al. Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm. Bowel Dis. 21, 870–8 (2015).

  • Hasby, E. et al. T regulatory cells and immunomodulation after Schistosoma mansoni egg antigen immunization in experimental model of inflammatory bowel disease. Cell. Immunol. 295, 67–76 (2015).

  • He, J. et al. NPC1L1 knockout protects against colitis-associated tumorigenesis in mice. BMC Cancer 15, 189 (2015).

  • Nakamura, S. et al. Erythropoietin attenuates intestinal inflammation and promotes tissue regeneration. Scand. J. Gastroenterol. 50, 1094–102 (2015).

  • Garrido-Mesa, J. et al. A new therapeutic association to manage relapsing experimental colitis: Doxycycline plus Saccharomyces boulardii. Pharmacol. Res. 97, 48–63 (2015).

  • Li, J. et al. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery. J. Control. Release 209, 77–87 (2015).

  • Nagy-Szakal, D. et al. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis. FASEB J. 29, 3151–9 (2015).

  • Wen, J. et al. The role of Th17/Treg balance and Th22 cell in the pathogenesis of DSS-induced colitis in mice. Eur. J. Inflamm. 13, 101–108 (2015).

  • Rauch, I. et al. Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons. Mol. Cell. Biol. 35, 2332–43 (2015).

  • Saijo, H. et al. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis. Lab. Invest. 95, 728–48 (2015).

  • Jain, U et al Regulation of Complement Activation Affects Colitis in Interleukin 10 Gene-Deficient Mice. Inflamm. Bowel Dis. 21, 1519–28 (2015).

  • Li, M. et al. Endomicroscopy Will Track Injected Mesenchymal Stem Cells in Rat Colitis Models. Inflamm. Bowel Dis. 21, 2068–77 (2015).

  • Zhang, J. et al. Ginsenosides Regulate PXR/NF-?B Signaling and Attenuate Dextran Sulfate Sodium-Induced Colitis. Drug Metab. Dispos. 43, 1181–9 (2015).

  • Gurav, A. et al. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem. J. 469, 267–78 (2015).

  • Dai, X. et al. MicroRNA-193a-3p Reduces Intestinal Inflammation in Response to Microbiota via Down-regulation of Colonic PepT1. J. Biol. Chem. 290, 16099–115 (2015).

  • Yokoyama, S., et al. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model. Exp. Dermatol. 24, 779–84 (2015).

  • Reichmann, F. et al. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci. Rep. 5, 9970 (2015).

  • Erickson, N. A. et al. The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS One 10, e0131991 (2015).

  • Wen, Y.-A. et al. Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis. Biochim. Biophys. Acta 1852, 2013–23 (2015).

  • Cho, J. Y. et al. ß-Caryophyllene attenuates dextran sulfate sodium-induced colitis in mice via modulation of gene expression associated mainly with colon inflammation. Toxicol. Reports 2, 1039–1045 (2015).

  • Wu, J. et al. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model. J. Microencapsul. 32, 598–607 (2015).

  • Naeem, M. et al. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des. Devel. Ther. 9, 3789–99 (2015).

  • Vitali, R. et al. Dipotassium glycyrrhizate via HMGB1 or AMPK signaling suppresses oxidative stress during intestinal inflammation. Biochem. Pharmacol. 97, 292–9 (2015).

  • Pandurangan, A. et al.. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Des. Devel. Ther. 9, 3923–34 (2015).



  • Zhou, M., Wang, Z., Chen, J., Zhan, Y., Wang, T., Xia, L., Wang, S., Hua, Z., Zhang, J. Supplementation of the diet with Salecan attenuates the symptoms of colitis induced by dextran sulphate sodium in mice (2014) British Journal of Nutrition, 111 (10), pp. 1822-1829.

  • Felgines, C., Fraisse, D., Besson, C., Vasson, M.-P., Texier, O. Bioavailability of lemon verbena (Aloysia triphylla) polyphenols in rats: Impact of colonic inflammation (2014) British Journal of Nutrition, 111 (10), pp. 1773-1781.

  • Weiss, G.A., Chassard, C., Hennet, T. Selective proliferation of intestinal Barnesiella under fucosyllactose supplementation in mice (2014) British Journal of Nutrition, 111 (9), pp. 1602-1610.

  • Zhang, C., Monk, J.M., Lu, J.T., Zarepoor, L., Wu, W., Liu, R., Pauls, K.P., Wood, G.A., Robinson, L., Tsao, R., Power, K.A. Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis (2014) British Journal of Nutrition, 111 (9), pp. 1549-1563.

  • Terc, J., Hansen, A., Alston, L., Hirota, S.A. Pregnane X receptor agonists enhance intestinal epithelial wound healing and repair of the intestinal barrier following the induction of experimental colitis (2014) European Journal of Pharmaceutical Sciences, 55 (1), pp. 12-19.

  • Lin, X., Yi, Z., Diao, J., Shao, M., Zhao, L., Cai, H., Fan, Q., Yao, X., Sun, X. ShaoYao decoction ameliorates colitis-associated colorectal cancer by downregulating proinflammatory cytokines and promoting epithelial-mesenchymal transition (2014) Acta Veterinaria Scandinavica, p. 105. Article in Press.

  • Shaker, A., Gargus, M., Fink, J., Binkley, J., Darwech, I., Swietlicki, E., Levin, M.S., Rubin, D.C. Epimorphin -/- mice are protected, in part, from acute colitis via decreased interleukin 6 signaling (2014) Translational Research, . Article in Press.

  • Kasinathan, N.K., Subramaniya, B.R., Pandian, I., Sivasithamparam, N.D. Aegle marmelos fruit extract abates dextran sodium sulfate induced acute colitis in mice: Repression of pro-inflammatory cytokines during colonic inflammation (2014) Biomedicine and Preventive Nutrition, . Article in Press.

  • Zhang, M., Khripin, C.Y., Fagan, J.A., McPhie, P., Ito, Y., Zheng, M. Single-step total fractionation of single-wall carbon nanotubes by countercurrent chromatography (2014) Analytical Chemistry, 86 (8), pp. 3980-3984.

  • Ranganathan, P., Jayakumar, C., Li, D.Y., Ramesh, G. UNC5B receptor deletion exacerbates DSS-induced colitis in mice by increasing epithelial cell apoptosis (2014) Journal of Cellular and Molecular Medicine, . Article in Press.

  • Kusunoki, Y., Ikarashi, N., Hayakawa, Y., Ishii, M., Kon, R., Ochiai, W., Machida, Y., Sugiyama, K. Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis (2014) European Journal of Pharmaceutical Sciences, 54 (1), pp. 17-27.

  • Benson, J.R., Xu, J., Moynes, D.M., Lapointe, T.K., Altier, C., Vanner, S.J., Lomax, A.E. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis (2014) Cell and Tissue Research, . Article in Press.

  • Fitzpatrick, L.R., Stonesifer, E., Small, J.S., Liby, K.T. The synthetic triterpenoid (CDDO-Im) inhibits STAT3, as well as IL-17, and improves DSS-induced colitis in mice (2014) Inflammopharmacology, . Article in Press.

  • Matsumoto, H., Haga, K., Ohno, I., Hiraoka, K., Kimura, T., Hermann, K., Kasahara, N., Anton, P., McGowan, I. Mucosal gene therapy using a pseudotyped lentivirus vector encoding murine interleukin-10 (mIL-10) suppresses the development and relapse of experimental murine colitis (2014) Acta Veterinaria Scandinavica, p. 68. Article in Press.

  • Ding, Y., Liang, Y., Deng, B., Qiao, A., Wu, K., Xiao, W., Gong, W. Induction of TGF-β and IL-10 production in dendritic cells using astilbin to inhibit dextran sulfate sodium-induced colitis (2014) Biochemical and Biophysical Research Communications, 446 (2), pp. 529-534.

  • Rabbi, M.F., Labis, B., Metz-Boutigue, M.-H., Bernstein, C.N., Ghia, J.-E. Catestatin decreases macrophage function in two mouse models of experimental colitis (2014) Biochemical Pharmacology, . Article in Press.

  • Nakamura, M., Tahara, Y., Murakami, T., Iijima, S., Yudasaka, M. Gastrointestinal actions of orally-administered single-walled carbon nanohorns (2014) Carbon, 69, pp. 409-416.

  • Maillard, M.H., Bega, H., Uhlig, H.H., Barnich, N., Grandjean, T., Chamaillard, M., Michetti, P., Velin, D. Toll-interacting protein modulates colitis susceptibility in mice (2014) Inflammatory Bowel Diseases, 20 (4), pp. 660-670.

  • Wuensch, T., Ullrich, S., Schulz, S., Chamaillard, M., Schaltenberg, N., Rath, E., Goebel, U., Sartor, R.B., Prager, M., Büning, C., Bugert, P., Witt, H., Haller, D., Daniel, H. Colonic expression of the peptide transporter PEPT1 is downregulated during intestinal inflammation and is not required for NOD2-dependent immune activation (2014) Inflammatory Bowel Diseases, 20 (4), pp. 671-684.

  • Bel, S., Elkis, Y., Elifantz, H., Koren, O., Ben-Hamo, R., Lerer-Goldshtein, T., Rahimi, R., Horin, S.B., Nyska, A., Shpungin, S., Nir, U. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF-/- mice (2014) Proceedings of the National Academy of Sciences of the United States of America, 111 (13), pp. 4964-4969.


1) Mouli, V.P., Ananthakrishnan, A.N. Review article: Vitamin D and inflammatory bowel diseases (2014) Alimentary Pharmacology and Therapeutics, 39 (2), pp. 125-136.

2) Salcedo, R., Cataisson, C., Hasan, U., Yuspa, S.H., Trinchieri, G. MyD88 and its divergent toll in carcinogenesis (2013) Trends in Immunology, 34 (8), pp. 379-389.

3) Zindl, C.L., Lai, J.-F., Lee, Y.K., Maynard, C.L., Harbour, S.N., Ouyang, W., Chaplin, D.D., Weaver, C.T. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis (2013) Proceedings of the National Academy of Sciences of the United States of America, 110 (31), pp. 12768-12773.

4) Tanaka, T., Ishikawa, H. Mast cells and inflammation-associated colorectal carcinogenesis (2013) Seminars in Immunopathology, 35 (2), pp. 245-254.

5) Tanaka, T. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention (2012) International Journal of Inflammation, 2012, art. no. 658786.

5) Sussman, D.A., Santaolalla, R., Strobel, S., Dheer, R., Abreu, M.T. Cancer in inflammatory bowel disease: Lessons from animal models (2012) Current Opinion in Gastroenterology, 28 (4), pp. 327-333.

6) Perše, M., Cerar, A. Dextran sodium sulphate colitis mouse model: Traps and tricks (2012) Journal of Biomedicine and Biotechnology, 2012, art. no. 718617.

7) Vora, P., McGovern, D.P.B. LRRK2 as a negative regulator of NFAT: Implications for the pathogenesis of inflammatory bowel disease (2012) Expert Review of Clinical Immunology, 8 (3), pp. 227-229.

8) Zhao, W.-C., Song, L.-J., Deng, H.-Z. Protective effect of total alkaloids of sophora alopecuroides on dextran sulfate sodium-induced chronic colitis (2011) Chinese Journal of Integrative Medicine, 17 (8), pp. 616-624.

9) Azuma, Y.-T., Nakajima, H., Takeuchi, T. IL-19 as a potential therapeutic in autoimmune and inflammatory diseases (2011) Current Pharmaceutical Design, 17 (34), pp. 3776-3780.

10) Naito, Y., Takagi, T., Uchiyama, K., Yoshikawa, T. Heme oxygenase-1: A novel therapeutic target for gastrointestinal diseases (2011) Journal of Clinical Biochemistry and Nutrition, 48 (2), pp. 126-133.

11) Egea, L., Hirata, Y., Kagnoff, M.F. GM-CSF: A role in immune and inflammatory reactions in the intestine (2010) Expert Review of Gastroenterology and Hepatology, 4 (6), pp. 723-731.

12) Takagi, T., Naito, Y., Uchiyama, K., Yoshikawa, T. The role of heme oxygenase and carbon monoxide in inflammatory bowel disease (2010) Redox Report, 15 (5), pp. 193-201.

13) Shukla, P., Gupta, G., Singodia, D., Shukla, R., Verma, A.K., Dwivedi, P., Kansal, S., Mishra, P.R. Emerging trend in nano-engineered polyelectrolyte-based surrogate carriers for delivery of bioactives (2010) Expert Opinion on Drug Delivery, 7 (9), pp. 993-1011.

14) Solomon, L., Mansor, S., Mallon, P., Donnelly, E., Hoper, M., Loughrey, M., Kirk, S., Gardiner, K. The dextran sulphate sodium (DSS) model of colitis: An overview (2010) Comparative Clinical Pathology, 19 (3), pp. 235-239.

15) Strauch, U.G., Grunwald, N., Obermeier, F., Gürster, S., Rath, H.C. Loss of CD103+ intestinal dendritic cells during colonic inflammation (2010) World Journal of Gastroenterology, 16 (1), pp. 21-29.

16) Maxwell, J.R., Brown, W.A., Smith, C.L., Byrne, F.R., Viney, J.L. Methods of inducing inflammatory bowel disease in mice (2009) Current Protocols in Pharmacology, (SUPPL.47), pp. 5.58.1-5.58.37.

17) Waldner, M.J., Neurath, M.F. Chemically induced mouse models of colitis (2009) Current Protocols in Pharmacology, (SUPPL. 46), pp. 5.55.1-5.55.15.

18) Nishihira, J., Mitsuyama, K. Overview of the role of macrophage migration inhibitory factor (MIF) in inflammatory bowel disease (2009) Current Pharmaceutical Design, 15 (18), pp. 2104-2109.

19) Soeda, S., Sakata, A., Ochiai, T., Yasuda, K., Kuramoto, Y., Shimeno, H., Toda, A., Eyanagi, R., Hikishima, S., Yokomastu, T., Shibuya, S. Sphingomyelinase inhibition suggests a possible new strategy for the treatment of inflammatory bowel disease (2008) Current Drug Therapy, 3 (3), pp. 218-225.

20) Kawada, M., Arihiro, A., Mizoguchi, E. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease (2007) World Journal of Gastroenterology, 13 (42), pp. 5581-5593.

21) Clapper, M.L., Cooper, H.S., Chang, W.-C.L. Dextran sulfate sodium-induced colitis-associated neoplasia: A promising model for the development of chemopreventive interventions (2007) Acta Pharmacologica Sinica, 28 (9), pp. 1450-1459.

22) Butterworth, J.R. Another important function for an old friend! The role of iron in colorectal carcinogenesis (2006) Gut, 55 (10), pp. 1384-1386.

23) Di Pace, R.F., Massa, S., Ribeiro, O.G., Cabrera, W.H.K., De Franco, M., Starobinas, N., Seman, M., Ibañez, O.C.M. Inverse genetic predisposition to colon versus lung carcinogenesis in mouse lines selected based on acute inflammatory responsiveness (2006) Carcinogenesis, 27 (8), pp. 1517-1525.

24) Guarner, F. Inulin and oligofructose: Impact on intestinal diseases and disorders (2005) British Journal of Nutrition, 93 (SUPP), pp. S61-S65.

25) Dagenais, S., Haldeman, S., Wooley, J.R. Intraligamentous injection of sclerosing solutions (prolotherapy) for spinal pain: A critical review of the literature (2005) Spine Journal, 5 (3), pp. 310-328. Cited 30 times.

26) Mirvish, S.S., Haorah, J., Zhou, L., Hartman, M., Morris, C.R., Clapper, M.L. N-Nitroso compounds in the gastrointestinal tract of rats and in the feces of mice with induced colitis or fed hot dogs or beef (2003) Carcinogenesis, 24 (3), pp. 595-603.


Table 1. Dosage of DSS for different strains of mice
Strain Dose (days) Reference
C57BL/6 2.5% (8) 1
Wild-type C57BL/6J(m) 3% (6) 2
C57BL/6 AhR null, WT 3.5% (7) 3
C57BL/6 5% (7) 4
C57BL/6 1.5% (7) 5
Balb/c 1% (10) 6
Balb/c 3% (5) 7
BALB/c 1-5% (10) 8
BALB/c; NMRI/KI 2.5-5% 9
IL-5-/- and +/+ 2.9%, 5% (9) 10
Balb/c; athymic nu/nu CD-1 (BR) 5% (7-35) 11
WT; CCR9(-/-); CCL25 (-/-) 2% (7) 12
Wild-type; DPIV -/- 2% (6) 13
C57BL//6 5% (7) 14

1. Q. Jia, I.Ivanov, Z.Zlatev, et al., Dietary _sh oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sulfate sodium treated mice, Br.J.Nutr., 2011;106(4),519-9.

2. A.L. Thiess,H.Laroui, T.S.Obertone et al, Nanoparticle-based therapeutic delivery of prohibitin to the colonic epithelial cells ameliorates acute murine colitis, In_amm.Bowel Dis.,2011;17(5), 1163-76.

3. R.Arsenescu, V.Arsenescu, J.Zhong et al, Role of xenobiotic receptor in in_ammatory bowel disease, In_amm.Bowel Dis.,2011;17(5), 1149-2.

4. N.A.Nagalingham, J.Y.Kao, V.B.Young, Microbial ecology of the murine gut associated with the development of dextran sulfate sodium induced colitis, In_amm, Bowel Disease, 2011; 7(4), 917-26.

5. J.Ramakers, M.I.Verstege, G.Thuijls et al., The PPARy agonist Rosiglitazone impairs colonic in_ammation in mice with experimental colitis, J.Clin.Immunol., 2007;27(3),275-283.

6. R.Pal_y, R.Gardlik,M.Behuliak et al,Salmonella-mediated gene therapy in experimental colitis in mice, Ex.Biol.Med.,2011; 236(2), 177-83.

7. Y.Shiomi, S.Nishiumi,M.Ooi et al., GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium, In_amm. Bowel Dis. 2011;17(11), 2261-74.

8. T.Rochat, L.Bermudez-Humaran, J-J Gratadoux et al., Anti-infammatory efects of Lactobacillus casei BL23 producing or not a manganese-dependent catalase on DSS-induced colitis in mice, Microb. CellFact., 2007; 20(6), 22.

9. A-C.Bylund-Fellenius, E.Landström, L.G.Axelsson et al., Experimental colitis induced by dextran sulphate in normal and germfree mice, Microbial Ecology in Health and Disease, 1994: 7, 207-215.

10. L.Stevceva, P.Pavli, A.Husband et al., Eosinophilia is attenuated in experimental colitis induced in IL-5 deficient mice, Genes Immun., 2000; 1(3),213-8.

11. L.G.Axelsson, E.Landström and A.C.Bylund-Fellenius, Experimental colitis induced by dextran sulphate sodium in mice: Beneficial effects of sulphasalazine and olsalazine, Aliment. Pharmacol.Ther., 1998;12(9), 925-34.

12. M.A. Wurbel, M.G.McIntyre, P.Dwyer, et al., CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis, PLoS One, 2011; 6(1), e16442.

13. R.Yazbeck, G.S.Howard, R.N.Butler et al., Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium induced colitis, J.Cell Physiol., 2011; 226(12), 319-24.

14. 26. G.K.Kumar, R.Dhamotharan. N.M. Kulkarni, Embelin ameliorates dextran sulfate sodium induced colitis in mice, Int. Immunopharmacol., 2011. E


Table 2. Dosage of DSS for different strains of rats
Strain Dose (days) Reference
Wistar 2% (2 weeks â€" 6 months) 15
Sprague-Dawley 5% (9) 16, 17, 18
Sprague-Dawley 5% (6) 19
Sprague-Dawley 5% (7) 20
Wistar 2.5% (7) 21
Wistar 5% (10) 22
Wistar 2-4% (7) 23
ACI 5% (14) 24

15. T.Tamaru, H.Kobayashi, S.Kishimoto et al., Histochemical study of colonic cancer in experimental colitis in rats, Dig. Dis. Sci., 1993;38, 529-537.

16. O.Schreiber, J.Petersson, M.Phillipson et al., Lactobacillus reuteri prevents colitis by reducing P-selectin associated leukocyte and platelet-endothelial cells, Am.J.Physiol.Gastrointest.Liver, 2009; 296, G534-542.

17. J.Dicksved, O.Schreiber, B.Willing, et al., Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PLoS One, 2012;7(9):e46399.

18. J.Petersson, O.Schreiber, A.Steege et al., eNOS involved incolitis-induced mucosal blood flow increase, Am.J.Physiol.Gastrointest.Liver, 2007; 293, G1281-1287.

19. V.Vasina, M.Broccoli, M.G.Ursino et al., Non-peptidyl low molecular weight radical scavenger IAC attenuates DSS-induced colitis in rats. World J.Gastroenterol., 2010; 16(29), 3642-50.

20. X.Z.Shi, J.H.Winston and S.K.Sarna, Differential immune and genetic responses in rat models of Chrohn´s colitis and ulcerative colitis, Am.J.Physiol.Gastrointest.Liver Physiol., 2011; 300(1), G41-51.

21. I.Hirono, K.Kuhara, S.Hosaka et al., Induction of intestinal tumors in rats by dextran sulfate sodium. J.Natl.Cancer Inst, 1981;66(3)579-583.

22. R.Lopez-Posadeas, P.Requena, R.Gonzalez et al., Bovine glucomacropeptide has intestinal anti-in_ammatory e_ects in rats with dextran-sulfate induced colitis, J.Nutr., 2010; 140(11), 2014-2019.

23. T.Shimizu, M.Suzuki, J.Fujimura et al., The relationship between the concentration of dextran sodium sulfate and the degree of induced experimental colitis in weanling rats, J.Pediatric Gastro. Nutrition, 2003;37, 481-486.

24. I.Hirono, K.Kuhara, S.Hosaka et al., Induction of intestinal tumors in rats by dextran sulfate sodium. J.Natl.Cancer Inst, 1981;66(3)579-483.


Table 3. Dosage of DSS for other animals
Strain Dose (days) Reference
Hamster 2.5%(6) 25
Hamster 1% 26, 17, 18
Guinea Pig 3% (4) 27
Pig (Yorkshire) 1.25 g/kg BW(5) 28

25. A.Karlsson, A.Jägervall, M.Pettersson et al., Dextran sulphate sodium induces acute colitis and alters hepatic function in hamsters, Int. Immunopharmacol., 2008;8(1),20-27.

26. M.Yamada, T.Ohkusa and I.Ohkusa, Occurence of dysplasia and adenocarcinoma after experimental ulcerative colitis in hamsters induced by dextran sodium sulfate, Gut, 1992; 33, 1521-1527.

27. T.Iwanaga, O.Hoshi, H.Han et al., Morphological analysis of acute ulcerous colitis experimentally induced by dextran sulfate sodium in the guinea pig, J. Gastroenterol., 1994;430-438.

28. D.Young, M.Ibuki, T.Nakamori et al., Soy-derived di-and tripeptides alleviate colon and ileum inflammation in pigs with dextran sodium sulfate-induced colitis, J.Nutr., 2012;142(2), 363-8.